LSDSem 2017 Shared Task: The Story Cloze Test
نویسندگان
چکیده
The LSDSem’17 shared task is the Story Cloze Test, a new evaluation for story understanding and script learning. This test provides a system with a four-sentence story and two possible endings, and the system must choose the correct ending to the story. Successful narrative understanding (getting closer to human performance of 100%) requires systems to link various levels of semantics to commonsense knowledge. A total of eight systems participated in the shared task, with a variety of approaches including end-to-end neural networks, feature-based regression models, and rule-based methods. The highest performing system achieves an accuracy of 75.2%, a substantial improvement over the previous state-of-the-art.
منابع مشابه
IIT (BHU): System Description for LSDSem’17 Shared Task
This paper describes an ensemble system submitted as part of the LSDSem Shared Task 2017 the Story Cloze Test. The main conclusion from our results is that an approach based on semantic similarity alone may not be enough for this task. We test various approaches and compare them with two ensemble systems. One is based on voting and the other on logistic regression based classifier. Our final sy...
متن کاملStory Cloze Task: UW NLP System
This paper describes University of Washington NLP’s submission for the Linking Models of Lexical, Sentential and Discourse-level Semantics (LSDSem 2017) shared task—the Story Cloze Task. Our system is a linear classifier with a variety of features, including both the scores of a neural language model and style features. We report 75.2% accuracy on the task. A further discussion of our results c...
متن کاملStory Cloze Ending Selection Baselines and Data Examination
This paper describes two supervised baseline systems for the Story Cloze Test Shared Task (Mostafazadeh et al., 2016a). We first build a classifier using features based on word embeddings and semantic similarity computation. We further implement a neural LSTM system with different encoding strategies that try to model the relation between the story and the provided endings. Our experiments show...
متن کاملPay Attention to the Ending: Strong Neural Baselines for the ROC Story Cloze Task
We consider the ROC story cloze task (Mostafazadeh et al., 2016) and present several findings. We develop a model that uses hierarchical recurrent networks with attention to encode the sentences in the story and score candidate endings. By discarding the large training set and only training on the validation set, we achieve an accuracy of 74.7%. Even when we discard the story plots (sentences b...
متن کاملAn RNN-based Binary Classifier for the Story Cloze Test
The Story Cloze Test consists of choosing a sentence that best completes a story given two choices. In this paper we present a system that performs this task using a supervised binary classifier on top of a recurrent neural network to predict the probability that a given story ending is correct. The classifier is trained to distinguish correct story endings given in the training data from incor...
متن کامل